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1. Partial derivatives

The concept of partial derivative plays a vital role in differential calculus. The different

ways of limit discussed in the previous section, yields different type of partial derivatives

of a function.

1.1. Definitions. Consider a real valued function z = f(x, y) defined on E ⊂ R2 such

that E contains a neighbourhood of (a, b) ∈ R2. Let ∆a be a change in a. If the limit,

lim
∆a→0

f(a+∆a, b)− f(a, b)

∆a

exists, then it is called the partial derivative of f with respect to x at (a, b) and is denoted

by ∂f
∂x
∣∣(a,b) or fx(a, b) or zx(a, b). Similarly, let ∆b be a change in b. If the limit,

lim
∆b→0

f(a, b+∆b)− f(a, b)

∆b

exists, then it is called the partial derivative of f with respect to y at (a, b) and is denoted

by ∂f
∂y
∣∣(a,b) or fy(a, b) or zy(a, b).

Notations. If the partial derivatives fx and fy exist at each point of E, then they are

also the real valued functions on E. Further, we can obtain the partial derivatives of these

functions, if they are differentiable. In these cases, we fix up the following notations.

fxx =
∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
, fyy =

∂2f

∂y2
=

∂

∂y

(
∂f

∂y

)
,

fyx =
∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
; and fxy =

∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
.

The notations of derivatives of order greater than two should be clear from the above

pattern.

1.2. Remark. As we have seen in the above example, in general, fxy and fyx need not be

equal, even if they exist. The following proposition gives a sufficient condition for them to

be equal. We accept it without proof. However, we shall be dealing only with the functions

f for which these two are equal.
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1.3. Proposition. Consider a real valued function z = f(x, y) defined on E ⊂ R2 such

that E contains a neighbourhood of (a, b) ∈ R2. If fxy and fyx exist and are continuous,

then fxy = fyx.

Throughout this chapter our blanket assumption will be that the operation of taking

partial derivatives is commutative. That is, for our function f of two variables, fxy =

fyx. In general, we may assume that the second derivatives of functions exists and are

continuous, so that, the Proposition 1.3 ensures our requirement.

1.4. Example. For u = x3− 3xy2, prove that ∂2u
∂x2 +

∂2u
∂y2

= 0. Also prove that ∂2u
∂x∂y

= ∂2u
∂y∂x

.

Solution. Here u = x3 − 3xy2. Hence,

∂u

∂x
= 3x2 − 3y2;

∂u

∂y
= −6xy;

∂2u

∂x∂y
= −6y =

∂2u

∂y∂x
.

∂2u

∂x2
= 6x;

∂2u

∂y2
= −6x.

Hence,
∂2u

∂x2
+
∂2u

∂y2
= 6x− 6x = 0 and

∂2u

∂x∂y
=

∂2u

∂y∂x
.

�

2. Homogeneous functions

Let us observe the following expressions carefully.

(1) f1(x, y) = x2y4 − x3y3 + xy5.

(2) f2(x, y) = x4y4 − x5y3 + x6y2.

The combined degree of x and y in each term of the first expression is 6 and that in the

second expression is 8. Can we determine whether the combined degree of x and y in each

term of the expression x
x4+y4

is same or not? It seems difficult to determine. Let us develop

the following tests.

Test 1: Let us take t = y
x
. Then

x2y4 − x3y3 + xy5 = x6(t4 − t3 + t5) = x6f(t)

and

x4y4 − x5y3 + x6y2 = x8(t4 − t3 + t2) = x8g(t),

where f and g are functions of one variable t.

Test 2: Now, let us replace x by tx and y by ty. Then

f1(tx, ty) = (tx)2(ty)4 − (tx)3(ty)3 + (tx)(ty)5 = t6f1(x, y)

and

f2(tx, ty) = (tx)4(ty)4 − (tx)5(ty)3 + (tx)6(ty)2 = t8f2(x, y).

2.1. Definitions. A function z = f(x, y) is said to be a homogeneous function of degree r,

if f(tx, ty) = trf(x, y) for some real number r. Otherwise, f is said to be a nonhomogeneous

function.
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2.2. Example. Let f : R2 \ {(x, y) : y = −x} → R defined by f(x, y) = x−y
x+y

. Then prove

that f is a homogeneous function of degree 0 and fx and fy exist at each point of the

domain.

Solution. Clearly, f(tx, ty) = f(x, y) = t0f(x, y). Thus f is a homogeneous function of

degree 0. Now for any (x, y) ∈ R2 with x+ y ̸= 0, we have,

fx(x, y) =
(x+ y)(1)− (x− y)(1)

(x+ y)2
=

2y

(x+ y)2

and

fy(x, y) =
(x+ y)(−1)− (x− y)(1)

(x+ y)2
=

−2x

(x+ y)2
.

�

2.3. Example. f : R2 \ {(0, 0)} → R defined by f(x, y) =
5
√
x− 5

√
y

x3+y3
is a homogeneous

function of degree −14
5
.

2.4. Theorem (Euler’s Theorem). State and prove Euler’s Theorem

Statement : Let z = f(x, y) be a real valued function defined on E ⊂ R2. Suppose that f

is a homogeneous function of degree n. If fx and fy exist on E, then

x
∂z

∂x
+ y

∂z

∂y
= nz. (2.4.1)

Proof. Since z = f(x, y) is a homogeneous function of x, y of degree n, we can write

z = f(x, y) = xng
(y
x

)
. (2.4.2)

Differentiating (2.4.2) partially with respect to x, we get,

∂z

∂x
= nxn−1g

(y
x

)
+ xng′

(y
x

)(
− y

x2

)
.

Hence,

x
∂z

∂x
= nxng

(y
x

)
− xn−1yg′

(y
x

)
. (2.4.3)

Similarly, differentiating (2.4.2) partially with respect to y, we get,

∂z

∂y
= xng′

(y
x

) 1

x
= xn−1g′

(y
x

)
.

Hence,

y
∂z

∂y
= yxn−1g′

(y
x

)
. (2.4.4)

Adding (2.4.3) and (2.4.4) we get,

x
∂z

∂x
+ y

∂z

∂y
= nxng

(y
x

)
= nz.

This completes the proof. �

We note that the converse of Euler’s Theorem also holds. That is, if a function

z = f(x, y) satisfies (2.4.1), on a certain domain, then it must be homogeneous on that

domain.
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2.5. Remark. Now onwards we shall not mention the domain of the functions under

discussion. Also, whenever we use the derivatives of functions under discussion, we assume

them to be sufficiently many times differentiable.

2.6. Corollary. Let z = f(x, y) be a real valued function defined on E ⊂ R2. Suppose that

f is a homogeneous function of degree n and that all the second order partial derivatives

of f exist and are continuous. Then prove that

x2
∂2z

∂x2
+ 2xy

∂2z

∂x∂y
+ y2

∂2z

∂y2
= n(n− 1)z.

Proof. Since z = f(x, y) is a homogeneous function of x, y of degree n, by Euler’s Theo-

rem,

x
∂z

∂x
+ y

∂z

∂y
= nz. (2.6.1)

Differentiating (2.6.1) partially with respect to x, we have,

x
∂2z

∂x2
+
∂z

∂x
+ y

∂2z

∂x∂y
= n

∂z

∂x
,

which, on multiplication by x, gives

x2
∂2z

∂x2
+ x

∂z

∂x
+ xy

∂2z

∂x∂y
= nx

∂z

∂x
.

Hence,

x2
∂2z

∂x2
+ xy

∂2z

∂x∂y
= (n− 1)x

∂z

∂x
. (2.6.2)

Similarly, differentiating (2.6.1) partially with respect to y and then multiplying the result

by y, we get,

y2
∂2z

∂y2
+ xy

∂2z

∂y∂x
= (n− 1)y

∂z

∂y
.

Since ∂2z
∂x∂y

= ∂2z
∂y∂x

, we get,

y2
∂2z

∂y2
+ xy

∂2z

∂x∂y
= (n− 1)y

∂z

∂y
. (2.6.3)

By adding (2.6.2) and (2.6.3) we have,

x2
∂2z

∂x2
+ 2xy

∂2z

∂x∂y
+ y2

∂2z

∂y2
= (n− 1)(x

∂z

∂x
+ y

∂z

∂y
) = n(n− 1)z.

This completes the proof. �

2.7. Corollary. Let u = u(x, y) be a nonhomogeneous real valued function defined on

E ⊂ R2 and z = φ(u) be homogeneous function of degree n. Then prove that

x
∂u

∂x
+ y

∂u

∂y
= n

φ(u)

φ′(u)
,

provided φ′(u) ̸= 0 for any (x, y) ∈ E.
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Proof. Since z = φ(u) is a homogeneous function of x, y of degree n, by Euler’s Theorem

we have,

x
∂z

∂x
+ y

∂z

∂y
= nz = nφ(u)

⇒ x

(
φ′(u)

∂u

∂x

)
+ y

(
φ′(u)

∂u

∂y

)
= nφ(u) ⇒ x

(
∂u

∂x

)
+ y

(
∂u

∂y

)
= n

φ(u)

φ′(u)
.

�

2.8. Corollary. (Only statement)Let u = u(x, y) be a nonhomogeneous real valued function

defined on E ⊂ R2 and z = φ(u) be homogeneous function of degree n. Then prove that

x2
∂2u

∂x2
+ 2xy

∂2u

∂x∂y
+ y2

∂2u

∂y2
= ψ(u)[ψ′(u)− 1],

where ψ(u) = n φ(u)
φ′(u)

, provided φ′(u) ̸= 0 for any (x, y) ∈ E.

2.9. Example. For the following functions, verify Euler’s Theorem and find

x2 ∂2z
∂x2 + 2xy ∂2z

∂x∂y
+ y2 ∂2z

∂y2
.

(1) z = xn log
(
y
x

)
.

(2) z = sin−1(x
y
) + tan−1( y

x
).

Solution. (1) Clearly, z is a homogeneous function of degree n.

∂z

∂x
= nxn−1 log

(y
x

)
+ xn

x

y

(
− y

x2

)
= nxn−1 log

(y
x

)
− xn−1

⇒ x
∂z

∂x
= nxn log

(y
x

)
− xn.

Also,
∂z

∂y
= xn

(
x

y

)(
1

x

)
=
xn

y
⇒ y

∂z

∂y
= xn.

Hence,
∂z

∂x
+ y

∂z

∂y
= nxn log

(y
x

)
= nz.

Thus Euler’s Theorem is verified.

By the Corollary 2.6,

x2
∂2z

∂x2
+ 2xy

∂2z

∂x∂y
+ y2

∂2z

∂y2
= n(n− 1)z.

(2) Replacing x by tx and y by ty, f(tx, ty) = sin−1(x
y
) + tan−1( y

x
) = t0f(x, y). Thus

z = f(x, y) is a homogeneous function of degree 0. Now,

∂z

∂x
=

1√
1− x2

y2

(
1

y

)
+

1

1 + y2

x2

(
−y
x2

)
=

1√
y2 − x2

− y

x2 + y2

⇒ x
∂z

∂x
=

x√
y2 − x2

− xy

x2 + y2
.



6

Also,

∂z

∂y
=

1√
1− x2

y2

(
−x
y2

)
+

1

1 + y2

x2

(
1

x

)
=

−x
y
√
y2 − x2

+
x

x2 + y2

⇒ y
∂z

∂y
=

−x√
y2 − x2

+
xy

x2 + y2
.

Hence,

x
∂z

∂x
+ y

∂z

∂y
= 0.

Thus Euler’s Theorem is verified.

By the Corollary 2.6,

x2
∂2z

∂x2
+ 2xy

∂2z

∂x∂y
+ y2

∂2z

∂y2
= n(n− 1)z = 0,

as n = 0. �
2.10. Example. If u = sin−1(x

2y2

x+y
), then prove the following.

(1) x∂u
∂x

+ y ∂u
∂y

= 3 tanu.

(2) x2 ∂
2u

∂x2 + 2xy ∂2u
∂x∂y

+ y2 ∂
2u

∂y2
= 3 tanu(3 sec2 u− 1).

Solution. Here u = sin−1(x
2y2

x+y
) is not a homogeneous function of x, y. Writing the given

equation differently, we have sin u = x2y2

x+y
. Let z = φ(u) = sin u. Then z = x2y2

x+y
, which is

homogeneous of degree 3. Hence by Corollary 2.7, x∂u
∂x

+ y ∂u
∂y

= 3 φ(u)
φ′(u)

= 3 sinu
cosu

= 3 tanu,

which proves (1). Also, by Corollary 2.8, we have,

x2
∂2u

∂x2
+ 2xy

∂2u

∂x∂y
+ y2

∂2u

∂y2
= 3 tan u[3 sec2 u− 1].

�

3. Theorem on total differentials

Throughout this section we consider only those functions of two variables that admit

continuous partial derivatives on their domain of definition. That is, if we are discussing

about a function z = f(x, y), then fx, fy exist and are continuous on the domain of f .

3.1. Theorem. ( Only statement ) Let z = f(x, y) be defined on E. Then

dz =
∂z

∂x
dx+

∂z

∂y
dy.

4. Differentiation of composite functions

In this section we shall study the differentiation of composite functions. Let z =

f(x, y) be function defined on E ⊂ R2. In turn one can have x = ϕ(t) and y = ψ(t),

t ∈ F ⊂ R. This makes f a function of one independent variable t. That is,

t ∈ F 7→ (ϕ(t), ψ(t)) ∈ E 7→ f(ϕ(t), ψ(t)).

The following theorem describes the differentiation of f with respect to t in this situation.



5. Change of variables 7

4.1. Theorem. ( Only statement ) Let z = f(x, y) be function defined on E ⊂ R2 and

x = ϕ(t), y = ψ(t), t ∈ F ⊂ R. Then prove that df
dt

= ∂f
∂x

dx
dt

+ ∂f
∂y

dy
dt
.

To extend Theorem 4.1 for functions of three variables, let u = f(x, y, z) be a function

of three variables with x = x(t), y = y(t) and z = z(t). Then

du

dt
=
∂u

∂x

dx

dt
+
∂u

∂y

dy

dt
+
∂u

∂z

dz

dt
.

5. Change of variables

Like the composite functions we can also consider the following situation. Let z =

f(x, y) be function defined on E ⊂ R2 and let there be another domain F ⊂ R2 such that

for each (x, y) ∈ E, x = ϕ(u, v), y = ψ(u, v), (u, v) ∈ F ⊂ R2. This is nothing but the

change of variable. In this case, the following theorem describes the partial derivatives of

f with respect to u and v.

Now we prove Euler’s Theorem for three variables. The homogeneous functions of

more than two variables are defined as in Definition 2.1. More explicitly, a function H =

f(x1, x2, . . . , xn) of n variables is called homogeneous if there exists r ∈ R such that

for f(tx1, tx2, . . . , txn) = trf(x1, x2, . . . , xn) for all t ∈ R. In this case, the degree of

homogeneity of H is r.

5.1. Theorem (Euler’s Theorem for Three variables). Let H = f(x, y, z) be a real valued

homogeneous function of three variables x, y, z of degree n defined on E ⊂ R3. If fx, fy,

fz exist on E, then prove that

x
∂H

∂x
+ y

∂H

∂y
+ z

∂H

∂z
= nH. (5.1.1)

Proof. Since H = f(x, y, z) is homogeneous function of degree n,

H = xnφ
(y
x
,
z

x

)
= xnφ(u, v),

where u = y
x
and v = z

x
. Hence,

∂H

∂x
= nxn−1φ(u, v) + xn

[
∂φ

∂u

∂u

∂x
+
∂φ

∂v

∂v

∂x

]
= nxn−1φ(u, v) + xn

[
− y

x2
∂φ

∂u
− z

x2
∂φ

∂v

]
= nxn−1φ(u, v)− xn−2y

∂φ

∂u
− xn−2z

∂φ

∂v

⇒x
∂H

∂x
= nxnφ(u, v)− xn−1y

∂φ

∂u
− xn−1z

∂φ

∂v
. (5.1.2)

Now,

∂H

∂y
= xn

[
∂φ

∂u

∂u

∂y
+
∂φ

∂v

∂v

∂y

]
= xn

[
1

x

∂φ

∂u
+ 0

∂φ

∂v

]
= xn−1∂φ

∂u

⇒y
∂H

∂y
= xn−1y

∂φ

∂u
. (5.1.3)
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Similarly,

z
∂H

∂z
= xn−1z

∂φ

∂v
. (5.1.4)

Adding (5.1.2), (5.1.3) and (5.1.4) we have,

x
∂H

∂x
+ y

∂H

∂y
+ z

∂H

∂z
= nxnφ(u, v) = nH.

This completes the proof. �
As noted in case of the functions of two variables, here also we recall that the converse

of Euler’s Theorem also holds. That is, if a function z = f(x, y) satisfies (5.1.1), on a certain

domain, then it must be homogeneous on that domain.

5.2. Example. Find dz
dt

when z = sin−1(x− y), x = 3t, y = 4t3. Also verify by the direct

substitution.

Solution.
dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

=
1√

1− (x− y)2
· 3− 1√

1− (x− y)2
· 12t2

=
3(1− 4t2)√
1− (x− y)2

=
3(1− 4t2)√
1− (3t− 4t3)2

=
3(1− 4t2)√

(1− 3t+ 4t3)(1 + 3t− 4t3)

=
3(1− 4t2)√

(1− t2)(1− 4t2)2
=

3√
1− t2

.

On the other hand, verifying directly by putting the values of x and y in z, we have

z = sin−1(3t− 4t3)

⇒dz

dt
=

(3− 12t2)√
1− (3t− 4t3)2

=
3(1− 4t2)√
1− (3t− 4t3)2

=
3√

1− t2
.

�

5.3. Example. If z = f(x, y), x = r cos θ, y = r sin θ, then prove that[
∂z

∂x

]2
+

[
∂z

∂y

]2
=

[
∂z

∂r

]2
+

1

r2

[
∂z

∂θ

]2
.

Solution. Here x, y are functions of r, θ. Hence z is a composite function of r, θ. Thus,

∂z

∂r
=
∂z

∂x

∂x

∂r
+
∂z

∂y

∂y

∂r
= cos θ

∂z

∂x
+ sin θ

∂z

∂y

⇒
[
∂z

∂r

]2
= cos2 θ

[
∂z

∂x

]2
+ 2 sin θ cos θ

∂z

∂x

∂z

∂y
+ sin2 θ

[
∂z

∂y

]2
. (5.3.1)
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Also,

∂z

∂θ
=
∂z

∂x

∂x

∂θ
+
∂z

∂y

∂y

∂θ
= −r sin θ ∂z

∂x
+ r cos θ

∂z

∂y

⇒
[
∂z

∂θ

]2
= r2 sin2 θ

[
∂z

∂x

]2
− 2r2 sin θ cos θ

∂z

∂x

∂z

∂y
+ r2 cos2 θ

[
∂z

∂y

]2
⇒ 1

r2

[
∂z

∂θ

]2
= sin2 θ

[
∂z

∂x

]2
− 2 sin θ cos θ

∂z

∂x

∂z

∂y
+ cos2 θ

[
∂z

∂y

]2
. (5.3.2)

Adding (5.3.1) and (5.3.2) we get,[
∂z

∂r

]2
+

1

r2

[
∂z

∂θ

]2
=

[
∂z

∂x

]2
+

[
∂z

∂y

]2
.

�

5.4. Example. If H = f(2x− 3y, 3y − 4z, 4z − 2x), then prove that

1

2

∂H

∂x
+

1

3

∂H

∂y
+

1

4

∂H

∂z
= 0.

Solution. Let u = 2x − 3y, v = 3y − 4z, w = 4z − 2x. Then H = f(u, v, w). Hence H

is a composite function of x, y, z. Therefore,

∂H

∂x
=
∂H

∂u

∂u

∂x
+
∂H

∂v

∂v

∂x
+
∂H

∂w

∂w

∂x
= 2

∂H

∂u
+ 0

∂H

∂v
− 2

∂H

∂w
= 2

∂H

∂u
− 2

∂H

∂w
. (5.4.1)

Also,

∂H

∂y
=
∂H

∂u

∂u

∂y
+
∂H

∂v

∂v

∂y
+
∂H

∂w

∂w

∂y
= −3

∂H

∂u
+ 3

∂H

∂v
+ 0

∂H

∂w
= −3

∂H

∂u
+ 3

∂H

∂v
. (5.4.2)

Finally,

∂H

∂z
=
∂H

∂u

∂u

∂z
+
∂H

∂v

∂v

∂z
+
∂H

∂w

∂w

∂z
= 0

∂H

∂u
− 4

∂H

∂v
+ 4

∂H

∂w
= −4

∂H

∂v
+ 4

∂H

∂w
. (5.4.3)

Hence,

1

2

∂H

∂x
+

1

3

∂H

∂y
+

1

4

∂H

∂z
=
∂H

∂u
− ∂H

∂w
− ∂H

∂u
+
∂H

∂v
− ∂H

∂v
+
∂H

∂w
= 0.

�

5.5. Example. If z = f(x, y) and u = ex cos y, v = ex sin y. Then prove that ∂f
∂x

=

u∂f
∂u

+ v ∂f
∂v
.

Solution. u = ex cos y, v = ex sin y. Hence,

u2 + v2 = e2x ⇒ ex =
√
u2 + v2 ⇒ x =

1

2
log (u2 + v2).

Also,
v

u
= tan y ⇒ y = tan−1( v

u
).

Thus x, y are functions of u, v, and so, z is a composite function of u, v. Now,

∂f

∂u
=
∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u
=
∂f

∂x

[
u

u2 + v2

]
+
∂f

∂y

[
−v

u2 + v2

]
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⇒ u
∂f

∂u
=

[
u2

u2 + v2

]
∂f

∂x
−
[

uv

u2 + v2

]
∂f

∂y
. (5.5.1)

Similarly,

v
∂f

∂v
=

[
v2

u2 + v2

]
∂f

∂x
+

[
uv

u2 + v2

]
∂f

∂y
. (5.5.2)

Adding (5.5.1) and (5.5.2) we get, u∂f
∂u

+ v ∂f
∂v

= ∂f
∂x
. �

6. Differentiation of implicit functions

Many a times we are given an expression f(x, y) = c, where c ∈ R is a constant.

Note here that, x and y are associated by a rule however we may not be able to write y

as a function of x. In this case, we say that y is a function of x, implicitly described by

f(x, y) = c or y is an implicit function of x. We obtain the method of calculating dy
dx

and
d2y
dx2 using the tools of partial derivatives.

6.1. Theorem. Let a function y of x be implicitly described by f(x, y) = c. Then prove

that

(1)
dy

dx
= −fx

fy
.

(2)
d2y

dx2
= −fxx(fy)

2 − 2fxyfxfy + fyy(fx)
2

(fy)
3 .

Proof. We know that f is a function of x and y. Also, y is an implicit function of x. So,

f is a composite function of x. Hence, differentiating the equation f(x, y) = c with respect

to x, we get,

∂f

∂x

dx

dx
+
∂f

∂y

dy

dx
= 0 ⇒ ∂f

∂x
+
∂f

∂y

dy

dx
= 0 ⇒ dy

dx
= −

∂f
∂x
∂f
∂y

= −fx
fy
.

This proves (1).

Now we prove (2).

d2y

dx2
=

d

dx

(
dy

dx

)
=

d

dx

(
−fx
fy

)
= −

fy
d
dx
(fx)− fx

d
dx
(fy)

(fy)2

= −
fy

(
∂
∂x
(fx) +

∂
∂y
(fx)

dy
dx

)
− fx

(
∂
∂x
(fy) +

∂
∂y
(fy)

dy
dx

)
(fy)2

= −
fy

(
fxx + fxy

(
−fx

fy

))
− fx

(
fyx + fyy

(
−fx

fy

))
(fy)2

= −fxx(fy)
2 − fyfxfxy − fxfyfyx + fyy(fx)

2

(fy)3
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= −fxx(fy)
2 − 2fxfyfxy + fyy(fx)

2

(fy)3
.

�

6.2. Example. Find dy
dx

when

(1) x sin(x− y)− (x+ y) = 0. (2) xy = yx.

Proof. (1) Let f(x, y) = x sin(x−y)−(x+y). Since f(x, y) = 0, by the previous theorem,

we have,

dy

dx
= −fx

fy
= −x cos(x− y) + sin(x− y)− 1

x cos(x− y)(−1)− 1

=
x cos(x− y) + sin(x− y)− 1

x cos(x− y) + 1
.

(2) Let f(x, y) = xy − yx. Since f(x, y) = 0, by the previous theorem, we have,

dy

dx
= −fx

fy
= −yxy−1 − yx log y

xy log x− xyx−1
=
yx log y − yxy−1

xy log x− xyx−1
.

�

6.3. Example. If z = xyf( y
x
) and z is constant, then show that

f ′( y
x
)

f( y
x
)
=
x[y + x dy

dx
]

y[y − x dy
dx
]
.

Solution. Let F (x, y) = xyf( y
x
). Then F (x, y) = z, z is constant. Thus y is an implicit

function of x. So,
∂F

∂x
+
∂F

∂y

dy

dx
= 0. (6.3.1)

Now differentiating F (x, y) with respect to x, we get,

∂F

∂x
= yf( y

x
) + xyf ′( y

x
)
(
− y

x2

)
= yf( y

x
)− y2

x
f ′( y

x
) =

y

x

[
xf( y

x
)− yf ′( y

x
)
]
.

Similarly,

∂F

∂y
= xf( y

x
) + xyf ′( y

x
)( 1

x
) = xf( y

x
) + yf ′( y

x
).

Putting these values in (6.3.1), we have,

y

x

[
xf( y

x
)− yf ′( y

x
)
]
+ xf( y

x
) + yf ′( y

x
)
dy

dx
= 0

⇒
[
y + x

dy

dx

]
f( y

x
) =

y

x

[
y − x

dy

dx

]
f ′( y

x
)

⇒
f ′( y

x
)

f( y
x
)
=
x

y

[
y + x dy

dx

y − x dy
dx

]
.

�
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6.4. Example. If A,B and C are angles of a ∆ABC such that

sin2A+ sin2B + sin2C = K, a constant, then prove that dB
dC

= tanC−tanA
tanA−tanB

.

Solution. Clearly, A+B+C = π. So, A = π− (B+C). Therefore, sinA = sin(B+C).

Let f(B,C) = sin2(B+C)+sin2B+sin2C−K. Hence f(B,C) = 0, i.e., B is an implicit

function of C. So, dB
dC

= − fC
fB
. Also,

fB =
∂f

∂B
= 2 sin(B + C) cos(B + C) + 2 sinB cosB

= sin 2(B + C) + sin 2B

= sin(2π − 2A) + sin 2B

= − sin 2A+ sin 2B

= 2 cos(B + A) sin(B − A)

= 2 cos(π − C) sin(B − A)

= −2 cosC sin(B − A)

= 2 cosC sin(A−B).

Similarly, we get,

fC = 2 cosB sin(A− C).

Hence,

dB

dC
= −cosB sin(A− C)

cosC sin(A−B)

= − cosB(sinA cosC − cosA sinC)

cosC(sinA cosB − cosA sinB))

= −sinA cosB cosC − cosA cosB sinC

sinA cosB cosC − cosA sinB cosC
.

Dividing by cosA cosB cosC, we get,
dB
dC

= − tanA−tanC
tanA−tanB

= tanC−tanA
tanA−tanB

.

�
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